Analysis of Variance Illustration – Stata version 14

Dear BIOSTATS 640 Spring 2023 Please be aware that this illustration may be out of date. Thank you - cb

	Page
1. Preliminaries	2
2. Illustration: Trial of Estrogen and Progesterone for Prevention of Heart Disease	3
3. ONE WAY Analysis of Variance	4
3a. Descriptives – Graphs	4
3b. Descriptives – Numerical	6
3c. Analysis of Variance Model Estimation	7
3d. Post-hoc Pairwise Comparison of Groups	10
3e. Post-hoc Graphs	12
	1.0
4. ONE WAY Analysis of Variance Diagnostics	13
4a. Homogeneity of Variances	13
4b. Normality of Residuals	14
5. TWO WAY Analysis of Variance	15
5a. Descriptives – Graphs	15
5b. Descriptives – Numerical	16
5c. Analysis of Variance Model Estimation	16
5d. Post-hoc Comparison of Groups	17
6. TWO WAY Analysis of Variance Diagnostics	20
6a. Homogeneity of Variances	20
6b. Normality of Residuals	21

1. Preliminaries

Preliminary - Download the stata data set hers 640anova.dta.

Note - This data set is accessible through the internet. Alternatively, you can download it from the course website.

- (a) In Stata, input directly from the internet using the command use use "http://people.umass.edu/biep640w/datasets/hers_640anova.dta", clear
- (b) From the course website, right click to download. Afterwards, in Stata, use FILE > OPEN See, http://people.umass.edu/biep640w/webpages/demonstrations.html

Preliminary – Download the stata command anovaplot

- . * Download "add-on" anova command anovaplot if you don't already have it
- . findit anovaplot

Preliminary – Download the stata command anovacontrast

- . * Download "add-on" anova command anovacontrast if you don't already have it
- . findit anovacontrast

2. Illustration: Trial of Estrogen and Progesterone for Prevention of Heart Disease

Source

Hulley et al (1998) Randomized trial of estrogen plus progestin for secondary prevention of heart disease in postmenopausal women. The Heart and Estrogen/progestin Replacement Study. *Journal of the American Medical Association*, **280**(7), 605-613

Source Data

The actual data set contains information on n=2,763. This was a randomized controlled trial investigation of hormone therapy for the prevention of heart attack and death.

The Data for this Illustration is a subset

- (1) This dataset is a subset of size n=612 from a larger data set of Hulley et all (1998) that is described below. I have taken a subsample of size n=612 so that students with "small stata" will be able to reproduce this analysis.
- (2) Specifically, I took a random sample of 300 whites, all 218 African-Americans, plus all 94 women of other race ethnicity.

Analysis Question

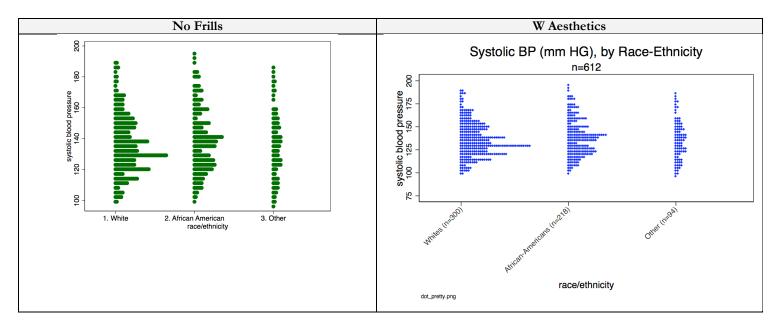
In this hypothetical data set, does systolic blood pressure (**sbp**) vary by race-ethnicity (**raceth**)?

3. ONE WAY Analysis of Variance

One Way Analysis of Variance Question

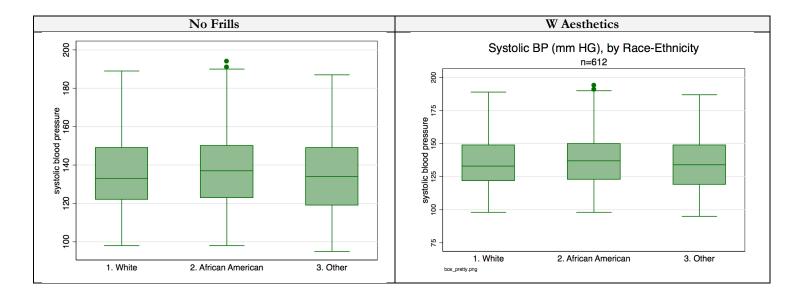
In this hypothetical data set, does Y =systolic blood pressure (**sbp**) vary over groups defined by X =race-ethnicity (**raceth**)?

3a. Descriptives - Graphs


- . ** Set scheme for graphs user choice
- . set scheme s1color
- . * get min and max of y=sbp for y-axis tick marks
- . tabstat sbp, stat(min max)

variable	min	max
sbp	95	194

- . * retrieve correspondence between codes and code labels and get sample sizes
- . numlabel, add
- . tabulate raceth


race/ethnicity	Freq.	Percent	Cum.
1. White 2. African American 3. Other	300 218 94	49.02 35.62 15.36	49.02 84.64 100.00
Total	612	100.00	

- . ** Side-by-side dot plot NO FRILLS
- . sort raceth
- . dotplot sbp, over(raceth)
- . ** Side-by-side dot plot w AESTHETICS
- . dotplot sbp, over(raceth) msymbol(d) msize(vsmall) mcolor(blue) ylabel(75(25)200, labsize(small)) xlabel(1 "Whites (n=300)" 2 "African-Americans (n=218)" 3 "Other (n=94)", labsize(small) angle(45)) title("Systolic BP (mm HG), by Race-Ethnicity") subtitle("n=612") caption("dot_pretty.png", size(vsmall))

sbp distributions are similar in the 3 groups. It's unlikely that anova will be significant.

- . ** Side-by-side box plot NO FRILLS
- . graph box sbp, over(raceth)
- . ** Side-by-side box plot w AESTHETICS
- . graph box sbp, over(raceth) ylabel(75(25)200, labsize(small)) title("Systolic BP (mm HG), by Race-Ethnicity") subtitle("n=612") caption("box_pretty.png", size(vsmall))

3b. Descriptives - Numerical

Note - There is more than one way to do these!

- . * Descriptives Numerical Descriptives of Raw Data
- . tabstat sbp, by(raceth) stat(n mean sd sem min q max)

Summary for variables: sbp

by categories of: raceth (race/ethnicity)

raceth		mean		se(mean)	min	p25	p50	p75	max
1. White 2. African Ameri 3. Other	300 218	136.0133 138.2339	18.55138 19.99252 21.25977	1.071064 1.354064	98 98 95	122 123 119	133 137 134	149 150 149	189 194 187
Total	612	136.6765	19.50878	.7885956	95	122	135	149	194

. tabulate raceth, summarize(sbp)

race/ethnic	Summary of sy	ystolic blood	pressure
ity	Mean	Std. Dev.	Freq.
White	136.01333	18.551379	300
African A	138.23394	19.992518	218
Other	135.18085	21.259767	94
Total	136.67647	19.508777	612

Numerical descriptives confirm what we saw in the graphs. The means are similar. We see that they range 135.2 mm Hg to 138.2 mm Hg. The standard deviations appear to be similar, too. They range 18.55 mm Hg to 21.26 mm Hg. Test of equality of variances is likely to be non-significant.

- . * Descriptives Obtain group specific means and associated 95% confidence intervals
- . sort raceth
- . by raceth: ci means sbp

. by racetin er means sop

-> raceth = White	->	raceth	= Whi	te
-------------------	----	--------	-------	----

Variable		[95% Conf.	-
	136.0133	133.9056	

-> raceth = African American

•		[95% Conf.	-
	138.2339	135.5651	

-> raceth = Other

0bs	Std. Err.	[95% Conf.	-
	2.192778		139.5353

No surprise. Lots of overlap of the confidence intervals.

3c. Analysis of Variance Model Estimation

Stata offers at least 2 commands for a one way anova: oneway or anova.

KEY:

If you use **oneway**, then the predictor variable is allowed to be **string** or **numeric**. If you use **anova**, then the predictor variable **must be numeric**.

How to convert a string variable into a new, numeric variable.

Use the command **encode** with the option **generate** as follows:

encode stringvar, generate(numericvar)

Tip – STATA will automatically create variable value labels for your new numericvar.

Now you have two choices for performing your one way anova fit:

- (1) oneway yvariable factor
- (2) anova yvariable numericfactor
- .* Illustration of command ANOVA
- .* anova YVARIABLE NUMERICFACTOR
- . anova sbp raceth

	Number of obs Root MSE			quared R-squared	
Source		df	MS	F	Prob > F
Model	871.000171			1.14	0.3190
raceth	871.000171	2	435.500085	1.14	0.3190
Residual	231670.941	609	380.412054		
Total	232541.941	611	380.592375		

The null hypothesis assumption of equal means does not lead to an unlikely outcome (p=.32); the null hypothesis is NOT rejected.

- .* TIP ONEWAY provides Bartlett test of equal variances.
- .* oneway YVARIABLE FACTOR
- . oneway sbp raceth

	Analysis	of Va	riance		
Source	SS	df	MS	F	Prob > F
Between groups	871.000171	2	435.500085	1.14	0.3190
Within groups	231670.941	609	380.412054		
Total	232541.941	611	380.592375		

Bartlett's test for equal variances: chi2(2) = 3.1766 Prob>chi2 = 0.204

.* To obtain summary statistics, use command <code>ONEWAY</code> with option <code>TABULATE</code> . oneway sbp raceth, tabulate $\,$

race/ethnic ity	Summary of sy Mean	ystolic blood Std. Dev.	pressure Freq.
1. White 2. Africa 3. Other		18.551379 19.992518 21.259767	300 218 94
Total	136.67647	19.508777	612

	Analysis	of Vai	riance		
Source	SS	df	MS	F	Prob > F
Between groups	871.000171	2	435.500085	1.14	0.3190
Within groups	231670.941	609	380.412054		
Total	232541.941	611	380.592375		

Bartlett's test for equal variances: chi2(2) = 3.1766 Prob>chi2 = 0.204

- .* To obtain reference cell coding regression solution, execute 2 commands
- .* First anova
- .* Second regress
- .* Step 1 Command is anova
- . anova sbp raceth

	Number of obs Root MSE			-squared dj R-squared		
Source	Partial SS	df	MS	F	Prob	> F
Model	871.000171	2	435.500085	1.14	0.3	3190
raceth	871.000171	2	435.500085	1.14	0.3	3190
Residual	231670.941		380.412054			
Total	232541.941					

.* Step 2 - Command is regress

. regress

Source		SS	df		MS	Number of		=	612
Model Residual	871 231	1.000171	2 609	435.5 380.4	500085 112054	F(2, 609) Prob > F R-squared Adj R-squa	:	= 0	1.14 0.3190 0.0037 0.0005
Total	232	2541.941	611	380.5	592375	Root MSE	:	= 1	.9.504
	sbp					P> t		Conf.	Interval]
African Americ	eth can ner	2.220612 8324823	1.73		1.28 -0.36		-1.18 -5.36		5.629519 3.695063
_0	ons	136.0133	1.12	6073	120.79	0.000	133.	8019	138.2248

Checking with means on page 8 - they match!

$$\begin{split} \hat{Y}_{\text{WHITE}} &= \hat{Y}_{\text{ref}} = [\; \hat{b}_{0} \,] = 136.01 \\ \hat{Y}_{\text{AFRICAN-AMERICAN}} &= \hat{Y}_{2} = [\; \hat{b}_{0} \, + \hat{b}_{2} \,] = [136.01 + 2.22] = 138.23 \\ \hat{Y}_{\text{OTHER}} &= \hat{Y}_{3} = \; [\; \hat{b}_{0} + \hat{b}_{3} \,] = [136.01 - 0.83 \;] = 135.18 \end{split}$$

3d. Post-hoc Pairwise Comparison of Groups

Pairwise comparisons of groups is done using the command pwcompare. Note – You must have fit the model first using anova

- .* PRELMINARY Must first fit model using anova
- . anova sbp raceth

	Number of obs Root MSE			quared R-squared	
Source	Partial SS	df	MS	F	Prob > F
Model	871.000171	2	435.500085	1.14	0.3190
raceth	871.000171	2	435.500085	1.14	0.3190
Residual	231670.941		380.412054		
Total	232541.941				

- .* Compare pairwise means with NO adjustment for multiple comparisons using PWCOMPARE
- .* pwcompare FACTOR
- . pwcompare raceth

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

	Contrast	Std. Err.	Unadj [95% Conf.	
raceth 2 vs 1 3 vs 1 3 vs 2	.9654558 2.228419 1.262963	1.034007 1.373318 1.433615	-1.065196 4685942 -1.552466	2.996108 4.925432 4.078392

For all pairwise comparisons of groups, the 95% confidence interval includes the null hypothesis value of zero.

- . * Pairwise comparison of means using ${\it Bonferroni\ adjustment}$ (NOT RECOMMENDED)
- . pwcompare raceth, mcompare(bonferroni) sort effects

Pairwise comparisons of marginal linear predictions

Margins : asbalanced

| Number of | Comparisons
| raceth | 3

	Contrast	Std. Err.	Bonfo t	erroni P> t		erroni Interval]
raceth 3 vs 2 3 vs 1 2 vs 1	-3.053094 8324823 2.220612	2.406646 2.305423 1.735814	-1.27 -0.36 1.28	0.615 1.000 0.604	-8.830518 -6.36691 -1.946404	2.724331 4.701945 6.387628

Even with the stringent Bonferroni adjustment, for all pairwise comparisons of groups, no statistically significant differences are found. Not surprising, given what we've already seen.

- . * Pairwise comparison of means using <u>Tukey adjustment</u> for Multiple Comparisons
- . * NOTE This requires equal sample sizes in all groups
- . * So, technically, I should not have done this.
- . pwcompare raceth, mcompare(tukey)

: asbalanced

Pairwise comparisons of marginal linear predictions

| Number of | Comparisons

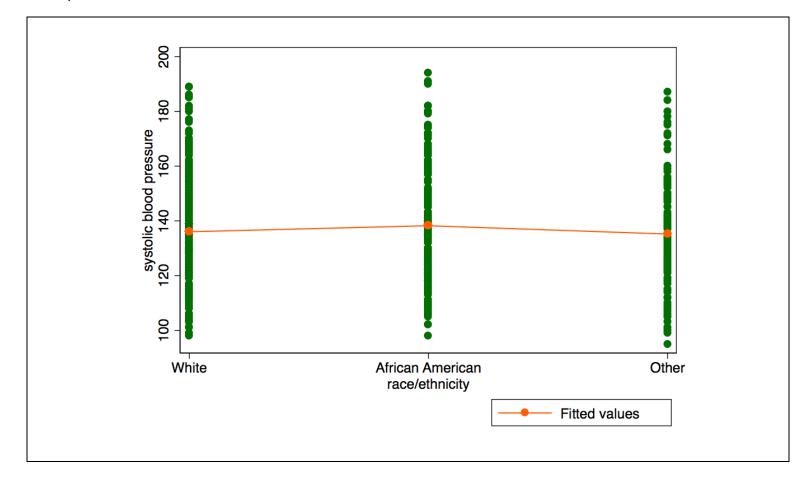
Margins

Tukey
| Contrast Std. Err. [95% Conf. Interval]

raceth |
2 vs 1 | 2.220612 1.735814 -1.857604 6.298827
3 vs 1 | -.8324823 2.305423 -6.24897 4.584005
3 vs 2 | -3.053094 2.406646 -8.7074 2.601212

Note: The tukey method requires balanced data for proper level coverage. A factor was found to be unbalanced.

Yes, yes, I know. I should not have done the Tukey procedure


3e. Post-Hoc Graphs

PRELIMINARY - You must have fit the model first using anova

. anova sbp raceth

	Number of obs Root MSE			quared R-squared		
Source	Partial SS	df	MS	F	Prob	> F
Model	871.000171	2	435.500085	1.14	0.	3190
raceth	871.000171	2	435.500085	1.14	0.	3190
Residual	231670.941		380.412054			
Total	232541.941					

- . * anova plot NO FRILLS
- . anovaplot

4. ONE WAY Analysis of Variance Diagnostics

4a. Homogeneity of Variances

- . * BARTLETT's Test is provided in output from command oneway
- . * Caution: This test is sensitive to the assumption of normality
- . oneway sbp raceth

	Analysis	of Var	riance		
Source	SS	df	MS	F	Prob > F
Between groups	871.000171	2	435.500085	1.14	0.3190
Within groups	231670.941	609	380.412054		
Total	232541.941	611	380.592375		

Bartlett's test for equal variances: chi2(2) = 3.1766 Prob>chi2 = 0.204

The null hypothesis of equal variances is not rejected (Bartlett test p-value=.20)

- . * LEVENE and BROWN-FORSYTHE tests are obtained using the command robvar
- . * These are good choices when assumption of normality is in question.
- * W 0 = Levene test
- . * W_50 = Forsythe-Browne modification of Levene test (mean is replaced by median)
- * W_10 = Fosythe-Browne modification of Levene test (mean is replaced by 10% trim)
- . * robar(YVAR), by(FACTOR)
- . robvar sbp, by(raceth)

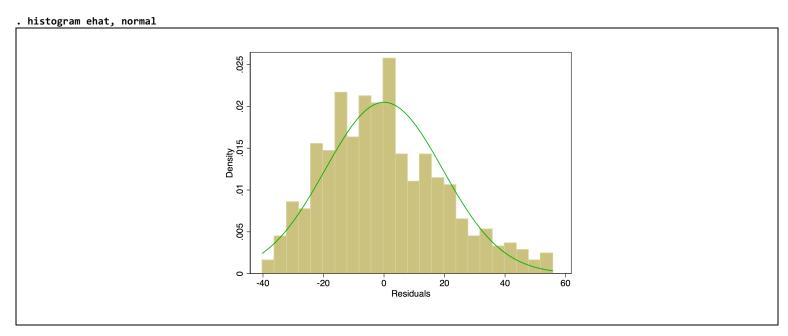
ity	•	Std. Dev.	Freq.	
White	136.01333		300	
African A	138.23394	19.992518	218	
Other	135.18085	21.259767	94	
Total	136.67647	19.508777	612	
W0 = 1.4143	3305 df(2, 60	99) Pr >	F = 0.24388559	Levene
W50 = 1.4701	1779 df(2, 60	99) Pr >	F = 0.23069929	Brown-Forsythe with median
W10 = 1.4741	L613 df(2, 60	99) Pr >	F = 0.22978655	Brown-Forsythe with 10% trimmed mean

The null hypothesis of equal variances is not rejected by Levene's test either (p-value=.24)

4b. Normality of Residuals

NOTE – The following requires that you fit your ONE WAY anova model using the command anova. THe following will not work if you fit your model using the command oneway.

. anova sbp raceth


	Number of obs = Root MSE =	612 19.5042			
Caumaa	l poution of	df		F	Prob>F
Source	Partial SS	uт 	MS 		
Model	871.00017	2	435.50009	1.14	0.3190
raceth	 871.00017	2	435.50009	1.14	0.3190
Residual	231670.94	609	380.41205		
Total	232541.94	611	380.59238		

- . predict ehat, residuals
- . * Shapiro-Wilk Test (NULL: Distribution is normal)
- . swilk ehat

Shapiro-Wilk W test for normal data

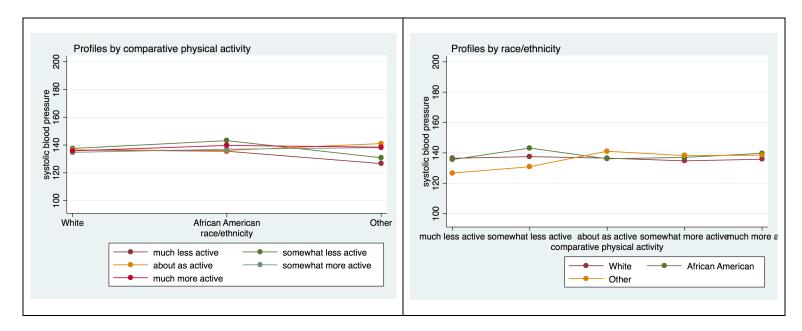
Variable	0bs	W	V	Z	Prob>z
ehat		0.98066			

Boo hoo. There is statistically significant evidence of departure from normality. Null is rejected (p < .00001). Let's do a graphical look to see if we're really in trouble.

This departure from normality is not so severe as to warrant transforming the data. For purposes of this illustration, we'll proceed under the assumption of normality.

5. TWO WAY Analysis of Variance

Two Way Analysis of Variance Question


In this hypothetical data set, does $Y = \text{systolic blood pressure } (\mathbf{sbp})$ vary over groups defined by $X_1 = \text{race-ethnicity}$ (raceth) and $X_2 = \text{physical activity } (\mathbf{physact})$?

5a. Descriptives – Graphs

We will use the command **anovaplot** here.

Our goal at this point is just a visualization of the means to see if there is interaction present. However, the stata command **anovaplot** requires that we have first executed the command **anova**. So we will do this "quietly:" which means that the output will not be shown.

- . st Obtain plot of mean Y=sbp over groups in 2 ways to assess interaction
- . quietly: anova sbp raceth physact raceth#physact
- .* Plot of means of Y=sbp with raceth, SEPARATELY for groups defined by physact (left panel)
- . anovaplot raceth physact, scatter(msym(none))
- . * Plot of means of Y=sbp with physact, SEPARATELY for groups defined by raceth (right panel)
- . anovaplot physact raceth, scatter(msym(none))

Okay, maybe this was not the best choice of example. These mean profiles look pretty similar.

5b. Descriptives - Numeric

. table physact raceth, contents(n sbp mean sbp sd sbp)

comparative physical activity	White	race/ethnicity African American	Other
much less active	14	33	18
mach less decive	136.4286	135.5455	126.6667
	19.63793	18.88467	22.68454
somewhat less active	55	51	21
İ	137.5273	143.1765	130.8571
	18.71012	21.08621	19.1371
about as active	99	67	26
	136.5253	136.1045	141.0769
	17.62208	20.27921	21.07875
somewhat more active	105	44	16
İ	134.7333	137	138.1875
	18.94337	19.55196	19.73565
much more active	27	23	13
İ	135.8148	139.6956	138.4615
İ	20.47895	18.5948	22.59283

Pretty tidy summary! A quick scan, however, suggests that the means are not likely to be assessed as statistically significantly different. Not surprising given the graphs we obtained earlier.

5c. Analysis of Variance Model Estimation

. anova sbp raceth physact raceth#physact

	Number of obs = Root MSE =	61 19.480			0.0258
Source	Partial SS	df	MS	F	Prob>F
Model	5988.6916	14	427.76368	1.13	0.3300
raceth physact raceth#physact	762.56725 1149.1915 3563.4604	2 4 8	381.28362 287.29788 445.43255	1.00 0.76 1.17	0.3668 0.5535 0.3125
Residual	226553.25	597	379.48618		
Total	232541.94	611	380.59238		

Oh dear. How boring. Nothing significant here.

5d. Post-hoc Comparison of Groups

- . anova sbp raceth physact raceth#physact
- . * Table of Fitted Means NICELY LAID OUT
- . predict yhat, xb
- . label var yhat "TWO WAY Anova Fit"
- . tabulate raceth physact, summarize(yhat) means

Means of TWO WAY Anova Fit

race/ethni city	much less	somewhat	about as	somewhat		•
White African A	136.42857 135.54546	137.52727 143.17647 130.85715	136.52525 136.10448	134.73334 137	135.81482 139.69565	136.01333 138.23394

No surprise here. Whether you read across the rows or down the columns, either way, we're not seeing much by way of changes in mean sbp. See again the pics on page 15.

- . * Table of Fitted Means not so nicely laid out, but with lots more information.
- . margins raceth#physact, asbalanced post

Adjusted predictions Number of obs = 612

Expression : Linear prediction, predict()

	Delta-method						
<u> </u>	Margin	Std. Err.	t	P> t	[95% Conf.	Interval]	
raceth#physact							
White#much less active	136.4286	5.206357	26.20	0.000	126.2036	146.6536	
White#somewhat less active	137.5273	2.626737	52.36	0.000	132.3685	142.686	
White#about as active	136.5253	1.957854	69.73	0.000	132.6801	140.3704	
White#somewhat more active	134.7333	1.901093	70.87	0.000	130.9997	138.467	
White#much more active	135.8148	3.749006	36.23	0.000	128.452	143.1777	
African American#much less active	135.5455	3.391103	39.97	0.000	128.8855	142.2054	
African American#somewhat less active	143.1765	2.727802	52.49	0.000	137.8192	148.5337	
African American#about as active	136.1045	2.37991	57.19	0.000	131.4305	140.7785	
African American#somewhat more active	137	2.936782	46.65	0.000	131.2323	142.7677	
African American#much more active	139.6957	4.061945	34.39	0.000	131.7182	147.6731	
Other#much less active	126.6667	4.591575	27.59	0.000	117.6491	135.6843	
Other#somewhat less active	130.8571	4.250973	30.78	0.000	122.5085	139.2058	
Other#about as active	141.0769	3.820422	36.93	0.000	133.5738	148.58	
Other#somewhat more active	138.1875	4.870101	28.37	0.000	128.6229	147.7521	
Other#much more active	138.4615	5.402892	25.63	0.000	127.8506	149.0725	

```
. * Post-hoc Tests of Simple Main Effects
```

- . * PRELIMINARY Must have fit model w anova command first
- . anova sbp raceth physact raceth#physact

	Number of obs : Root MSE	61 19.486	•	ed = quared =	0.0258 0.0029
Source	Partial SS	df	MS	F	Prob>F
Model	5988.6916	14	427.76368	1.13	0.3300
raceth physact raceth#physact	762.56725 1149.1915 3563.4604	2 4 8	381.28362 287.29788 445.43255	1.00 0.76 1.17	0.3668 0.5535 0.3125
Residual	226553.25	597	379.48618		
Total	232541.94	 611	380.59238		

- . * Test of simple main effect of predictor = physact, separately at each raceth
- . sme physact raceth

```
Test of physact at raceth(1): F(4/597) = .21576196
Test of physact at raceth(2): F(4/597) = 1.2545496
Test of physact at raceth(3): F(4/597) = 1.9011494
```

```
Critical value of F for alpha = .05 using ...

Dunn's procedure = 2.9791402

Marascuilo & Levin = 3.2193716

per family error rate = 3.0491547

simultaneous test procedure = 4.8816539
```

At each level of raceth, the F-statistic for testing equality of sbp over groups defined by physact is <u>NOT</u> in the critical region. Thus, we have no statistically significant evidence of variations in sbp by physact.

- . * Test of simple main effect of predictor = raceth, separately at each physact
- . sme raceth physact

```
Test of raceth at physact(1): F(2/597) = 1.4432739
Test of raceth at physact(2): F(2/597) = 3.1481138
Test of raceth at physact(3): F(2/597) = .66958053
Test of raceth at physact(4): F(2/597) = .35753139
Test of raceth at physact(5): F(2/597) = .25655016
```

Critical value of F for alpha = .05 using ...

Dunn's procedure = 4.003167
Marascuilo & Levin = 4.414349
per family error rate = 4.6408772
simultaneous test procedure = 9.7633078

At each level of physact, the F-statistic for testing equality of sbp over groups defined by raceth is <u>NOT</u> in the critical region. Thus, we have no statistically significant evidence of variations in sbp by raceeth

- . * Pairwise comparison of groups using command anovacontrast (requires installation)
- . * CAUTION!!!!! If interaction is significant, this analysis may not be appropriate.
- . * Preliminary: Use command fre to see again the codings for raceth
- . fre raceth

raceth -- race/ethnicity

	ļ	Freq.	Percent	Valid	Cum.
Valid	1 White	300	49.02	49.02	49.02
	2 African American	218	35.62	35.62	84.64
	3 Other	94	15.36	15.36	100.00
	Total	612	100.00	100.00	

- . * Pairwise comparison of 2 groups: (1=White) v (2=African American)
- . * KEY: Entries in option values() must total 0 and must make sense
- . * (1=White) \rightarrow 1, (2=African American) \rightarrow -1 and (3=Other) \rightarrow 0
- . quietly: anova sbp raceth physact raceth#physact
- anovacontrast raceth, values(1 -1 0)

Contrast variable: raceth (1 -1 0) Dep Var: sbp SS df MS Contrast = source ------N of obs = 612 contrast | 397.018529 1 397.0185 1.05 226553.25 597 379.4862 Prob > F =error 0.3068 t 1.02

Overall, there is no statistically significant difference in sbp, Whites v African-Americans (p=.31)

- . * Another example
- . fre physact

physact -- comparative physical activity

	ļ.	Freq.	Percent	Valid	Cum.
Valid	1 much less active	65	10.62	10.62	10.62
	2 somewhat less active	127	20.75	20.75	31.37
	3 about as active	192	31.37	31.37	62.75
	4 somewhat more active	165	26.96	26.96	89.71
	5 much more active	63	10.29	10.29	100.00
	Total	612	100.00	100.00	

- . * Compare all "less" active versus all "more" active
- . quietly: anova sbp raceth physact raceth#physact
- . anovacontrast physact, values(-1 -1 0 1 1)

Contrast	variable: physact	(-1 -1	0 1 1) Dep	Var: sbp	
source	SS	df	MS	Contrast =	4.56
	-+			N of obs =	612
contrast	378.775904	1	378.7759	F =	1.00
error	226553.25	597	379.4862	Prob > F =	0.3182
	-+			t =	1.00

Overall, there is no statistically significant difference in sbp, Less active v More active (p=.32)

6. TWO WAY Analysis of Variance Diagnostics

6a. Homogeneity of Variances

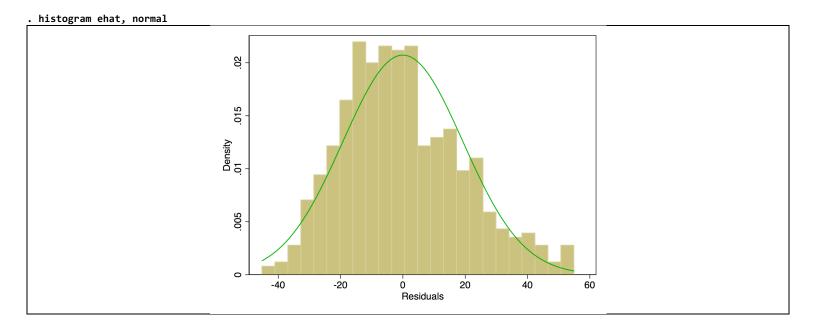
Spoiler – we need to trick Stata.

We will use the command **robvar** to obtain our test of equality of variance. However, STATA will not accommodate groups defined by 2 factors (in our case raceth and physact). So we will use the command **egen** with the option **group** to create a new variable that is just one collection of groups. In this case, I've named my new variable *allgroups*.

- . egen allgroups=group(raceth physact)
- . robvar sbp, by(allgroups)

group(racet	Summary of s	ystolic blood	pressure
h physact)	Mean	Std. Dev.	Freq.
1	136.42857	19.637931	14
2	137.52727	18.710123	55
3	136.52525	17.622078	99
4	134.73333	18.94337	105
5	135.81481	20.478952	27
6	135.54545	18.884668	33
7	143.17647	21.08621	51
8	136.10448	20.279213	67
9	137	19.551958	44
10	139.69565	18.594806	23
11	126.66667	22.684537	18
12	130.85714	19.137099	21
13	141.07692	21.078753	26
14	138.1875		16
15	138.46154	22.592828	13
Total	136.67647	19.508777	612
W0 = 0.2744	0108 df(14,	597) Pr	> F = 0.99621084
W50 = 0.2468	4554 df(14,	597) Pr	> F = 0.99786588
W10 = 0.2712	.5653 df(14,	597) Pr	> F = 0.99643754

NOT Significant. We have no statistically significant evidence of a departure from equality of variances


6b. Normality of Residuals

Same as before(see again Section 4.b)

- . quietly: anova sbp raceth physact raceth#physact
- . predict ehat, residuals
 . * Shapiro-Wilk Test (NULL: Distribution is normal)
- . swilk ehat

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
+					
ehat l	612	0.98058	7.840	4.995	0.00000

This departure from normality is not so horrible.